\qquad

Quiz 1

Question 1. (12 pts)

(a) (5 pts) Find equations of the line L that passes through the points $A(1,0,4,3)$ and $B(3,2,0,1)$.

Solution: First, calculate the direction of the line:

$$
\overrightarrow{A B}=(2,2,-4,-2)
$$

Then the equations of the line are

$$
\left\{\begin{array}{l}
x_{1}=2 t+1 \\
x_{2}=2 t \\
x_{3}=-4 t+4 \\
x_{4}=-2 t+3
\end{array}\right.
$$

(b) (7 pts) Find an equation of the hyperplane H that passes through $(1,1,1)$ and is parallel to both vectors $v=(1,0,2)$ and $u=(0,1,3)$.

Solution: We need a normal vector of the hyperplane.

$$
n=\left|\begin{array}{lll}
i & j & k \\
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right|=(-2,-3,1)
$$

The an equation of hyperplane is of the form

$$
-2 x-3 y+z=b
$$

for some $b \in \mathbb{R}$. Now plug $(1,1,1)$ into this equation to solve for b, and we have

$$
-2 x-3 y+z=-4
$$

Question 2. (8 pts)

This problem provides a method to decide whether four given points in \mathbb{R}^{3} lie in the same plane (i.e. coplanar). Given $P(1,2,1), Q(1,1,2), R(3,0,1), S(4,1,3)$.
(a) Write down the vectors $\overrightarrow{P Q}, \overrightarrow{P R}$ and $\overrightarrow{P S}$.

Solution:

$$
\begin{aligned}
& \overrightarrow{P Q}=(0,-1,1) \\
& \overrightarrow{P R}=(2,-2,0) \\
& \overrightarrow{P S}=(3,-1,2)
\end{aligned}
$$

(b) Decide whether $\overrightarrow{P Q}, \overrightarrow{P R}$ and $\overrightarrow{P S}$ are coplanar. (Hint: think about the volume of the parallelepiped spanned by these three vectors.)

Solution: $\overrightarrow{P Q}, \overrightarrow{P R}$ and $\overrightarrow{P S}$ are coplanar if and only if the volume of the parallelepiped spanned by them is zero.
The volume is

$$
|\overrightarrow{P Q} \cdot(\overrightarrow{P R} \times \overrightarrow{P S})|=\cdots=8
$$

Here I leave out the details, which you can fill in yourself. So $\overrightarrow{P Q}, \overrightarrow{P R}$ and $\overrightarrow{P S}$ are not coplanar.
(c) Conclude that whether P, Q, R and S are coplanar or not, based on part (b).

Solution: It follows from part (b) that P, Q, R and S are not coplanar.

